Working with imagery
Diego Hernangómez
Source:vignettes/articles/working_imagery.Rmd
working_imagery.Rmd
mapSpain provides a powerful interface for working
with imagery. mapSpain can download static files as
.png
or .jpeg
files (depending on the Web Map
Service) and use them along your shapefiles.
mapSpain also includes a plugin for R leaflet package, that allows you to include several basemaps on your interactive maps.
The services are implemented via the leaflet plugin leaflet-providersESP. You can check a display of each provider on the previous link.
Static tiles
An example of how you can include several tiles to create a static map. We focus here on layer provided by La Rioja’s Infraestructura de Datos Espaciales (IDERioja).
When working with imagery, it is important to set
moveCAN = FALSE
, otherwise the images for the Canary
Islands won’t be accurate.
library(mapSpain)
library(sf)
library(ggplot2)
library(tidyterra)
# Logroño
lgn_borders <- esp_get_munic_siane(munic = "Logroño")
# Convert to Mercator (EPSG:3857) as a general advice when working with tiles
lgn_borders <- st_transform(lgn_borders, 3857)
tile_lgn <- esp_getTiles(lgn_borders, "IDErioja", bbox_expand = 0.5)
ggplot(lgn_borders) +
geom_spatraster_rgb(data = tile_lgn) +
geom_sf(fill = NA, linewidth = 2, color = "blue")
Alpha value on tiles
Some tiles could be loaded with or without an alpha value, that controls the transparency of the object:
madrid <- esp_get_ccaa("Madrid", epsg = 3857)
# Example without transparency
basemap <- esp_getTiles(madrid, "IDErioja.Claro",
zoommin = 1,
crop = TRUE, bbox_expand = 0
)
tile_opaque <- esp_getTiles(madrid, "RedTransporte.Carreteras",
transparent = FALSE, crop = TRUE, bbox_expand = 0
)
ggplot() +
geom_spatraster_rgb(data = basemap) +
geom_spatraster_rgb(data = tile_opaque) +
theme_void()
Now let’s check the same code using the
tranparent = TRUE
option:
# Example with transparency
tile_alpha <- esp_getTiles(madrid, "RedTransporte.Carreteras",
transparent = TRUE, crop = TRUE, bbox_expand = 0
)
# Same code than above for plotting
ggplot() +
geom_spatraster_rgb(data = basemap) +
geom_spatraster_rgb(data = tile_alpha) +
theme_void()
Now the two tiles overlaps with the desired alpha value.
Masking tiles
Another nice feature is the ability of masking the tiles, so more advanced maps can be plotted:
rioja <- esp_get_prov("La Rioja", epsg = 3857)
basemap <- esp_getTiles(rioja, "PNOA", bbox_expand = 0.1, zoommin = 1)
masked <- esp_getTiles(rioja, "IDErioja", mask = TRUE, zoommin = 1)
ggplot() +
geom_spatraster_rgb(data = basemap, maxcell = 10e6) +
geom_spatraster_rgb(data = masked, maxcell = 10e6)
Dynamic maps with Leaflet
mapSpain provides a plugin to be used with the leaflet package. Here you can find some quick examples:
Earthquakes in Tenerife (last year)
library(leaflet)
tenerife_leaf <- esp_get_nuts(
region = "Tenerife", epsg = 4326,
moveCAN = FALSE
)
bbox <- as.double(round(st_bbox(tenerife_leaf) + c(-1, -1, 1, 1), 2))
# Start leaflet
m <- leaflet(tenerife_leaf,
elementId = "tenerife-earthquakes",
width = "100%", height = "60vh",
options = leafletOptions(minZoom = 9, maxZoom = 18)
)
# Add layers
m <- m %>%
addProviderEspTiles("IDErioja.Relieve") %>%
addPolygons(color = NA, fillColor = "red", group = "Polygon") %>%
addProviderEspTiles("Geofisica.Terremotos365dias",
group = "Earthquakes"
)
# Add additional options
m %>%
addLayersControl(
overlayGroups = c("Polygon", "Earthquakes"),
options = layersControlOptions(collapsed = FALSE)
) %>%
setMaxBounds(bbox[1], bbox[2], bbox[3], bbox[4])
Population density in Spain
A map showing the population density of Spain as of 2019:
munic <- esp_get_munic_siane(
year = 2019,
epsg = 4326,
moveCAN = FALSE,
rawcols = TRUE
)
# Get area in km2 from siane munic
# Already on the shapefile
munic$area_km2 <- munic$st_area_sh * 10000
# Get population
pop <- mapSpain::pobmun19
# Paste
munic_pop <- merge(munic, pop[, c("cmun", "cpro", "pob19")],
by = c("cmun", "cpro"),
all.x = TRUE
)
munic_pop$dens <- munic_pop$pob19 / munic_pop$area_km2
munic_pop$dens_label <- prettyNum(round(munic_pop$dens, 2),
big.mark = ".",
decimal.mark = ","
)
# Create leaflet
bins <- c(0, 10, 25, 100, 200, 500, 1000, 5000, 10000, Inf)
pal <- colorBin("inferno", domain = munic_pop$dens, bins = bins, reverse = TRUE)
labels <- sprintf(
"<strong>%s</strong><br/><em>%s</em><br/>%s pers. / km<sup>2</sup>",
munic_pop$rotulo,
munic_pop$ine.prov.name,
munic_pop$dens_label
) %>% lapply(htmltools::HTML)
leaflet(elementId = "SpainDemo", width = "100%", height = "60vh") %>%
setView(lng = -3.684444, lat = 40.308611, zoom = 5) %>%
addProviderEspTiles("IDErioja") %>%
addPolygons(
data = munic_pop,
fillColor = ~ pal(dens),
fillOpacity = 0.6,
color = "#44444",
weight = 0.5,
smoothFactor = .1,
opacity = 1,
highlightOptions = highlightOptions(
color = "white",
weight = 1,
bringToFront = TRUE
),
popup = labels
) %>%
addLegend(
pal = pal, values = bins, opacity = 0.7,
title = paste0(
"<small>Pop. Density km<sup>2</sup></small><br><small>",
"(2019)</small>"
),
position = "bottomright"
)
Providers available
The list esp_tiles_providers
includes the data of the
available providers you can use on functions described above. This list
includes all the parameters needed to replicate the API request. See the
static url of each provider:
Session info
Details
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.4.2 (2024-10-31 ucrt)
#> os Windows Server 2022 x64 (build 20348)
#> system x86_64, mingw32
#> ui RTerm
#> language en
#> collate English_United States.utf8
#> ctype English_United States.utf8
#> tz UTC
#> date 2025-01-21
#> pandoc 3.1.11 @ C:/HOSTED~1/windows/pandoc/31F387~1.11/x64/PANDOC~1.11/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> bslib 0.8.0 2024-07-29 [1] RSPM
#> cachem 1.1.0 2024-05-16 [1] RSPM
#> class 7.3-22 2023-05-03 [3] CRAN (R 4.4.2)
#> classInt 0.4-11 2025-01-08 [1] RSPM
#> cli 3.6.3 2024-06-21 [1] RSPM
#> codetools 0.2-20 2024-03-31 [3] CRAN (R 4.4.2)
#> colorspace 2.1-1 2024-07-26 [1] RSPM
#> countrycode 1.6.0 2024-03-22 [1] RSPM
#> crosstalk 1.2.1 2023-11-23 [1] RSPM
#> DBI 1.2.3 2024-06-02 [1] RSPM
#> desc 1.4.3 2023-12-10 [1] RSPM
#> digest 0.6.37 2024-08-19 [1] RSPM
#> dplyr 1.1.4 2023-11-17 [1] RSPM
#> e1071 1.7-16 2024-09-16 [1] RSPM
#> evaluate 1.0.3 2025-01-10 [1] RSPM
#> farver 2.1.2 2024-05-13 [1] RSPM
#> fastmap 1.2.0 2024-05-15 [1] RSPM
#> fs 1.6.5 2024-10-30 [1] RSPM
#> generics 0.1.3 2022-07-05 [1] RSPM
#> geojsonsf 2.0.3 2022-05-30 [1] RSPM
#> ggplot2 * 3.5.1 2024-04-23 [1] RSPM
#> giscoR 0.6.0 2024-08-28 [1] RSPM
#> glue 1.8.0 2024-09-30 [1] RSPM
#> gtable 0.3.6 2024-10-25 [1] RSPM
#> htmltools 0.5.8.1 2024-04-04 [1] RSPM
#> htmlwidgets 1.6.4 2023-12-06 [1] RSPM
#> jquerylib 0.1.4 2021-04-26 [1] RSPM
#> jsonlite 1.8.9 2024-09-20 [1] RSPM
#> KernSmooth 2.23-24 2024-05-17 [3] CRAN (R 4.4.2)
#> knitr 1.49 2024-11-08 [1] RSPM
#> leaflet * 2.2.2 2024-03-26 [1] RSPM
#> lifecycle 1.0.4 2023-11-07 [1] RSPM
#> magrittr 2.0.3 2022-03-30 [1] RSPM
#> mapSpain * 0.10.0 2025-01-21 [1] local
#> munsell 0.5.1 2024-04-01 [1] RSPM
#> pillar 1.10.1 2025-01-07 [1] RSPM
#> pkgconfig 2.0.3 2019-09-22 [1] RSPM
#> pkgdown 2.1.1 2024-09-17 [1] any (@2.1.1)
#> png 0.1-8 2022-11-29 [1] RSPM
#> proxy 0.4-27 2022-06-09 [1] RSPM
#> purrr 1.0.2 2023-08-10 [1] RSPM
#> R.cache 0.16.0 2022-07-21 [1] RSPM
#> R.methodsS3 1.8.2 2022-06-13 [1] RSPM
#> R.oo 1.27.0 2024-11-01 [1] RSPM
#> R.utils 2.12.3 2023-11-18 [1] RSPM
#> R6 2.5.1 2021-08-19 [1] RSPM
#> ragg 1.3.3 2024-09-11 [1] RSPM
#> RColorBrewer 1.1-3 2022-04-03 [1] RSPM
#> Rcpp 1.0.14 2025-01-12 [1] RSPM
#> reactable * 0.4.4 2023-03-12 [1] RSPM
#> reactR 0.6.1 2024-09-14 [1] RSPM
#> rlang 1.1.5 2025-01-17 [1] RSPM
#> rmarkdown 2.29 2024-11-04 [1] RSPM
#> sass 0.4.9 2024-03-15 [1] RSPM
#> scales 1.3.0 2023-11-28 [1] RSPM
#> sessioninfo * 1.2.2 2021-12-06 [1] RSPM
#> sf * 1.0-19 2024-11-05 [1] RSPM
#> slippymath 0.3.1 2019-06-28 [1] RSPM
#> styler 1.10.3 2024-04-07 [1] RSPM
#> systemfonts 1.2.1 2025-01-20 [1] CRAN (R 4.4.2)
#> terra 1.8-10 2025-01-14 [1] RSPM
#> textshaping 1.0.0 2025-01-20 [1] CRAN (R 4.4.2)
#> tibble 3.2.1 2023-03-20 [1] RSPM
#> tidyr 1.3.1 2024-01-24 [1] RSPM
#> tidyselect 1.2.1 2024-03-11 [1] RSPM
#> tidyterra * 0.6.2 2025-01-08 [1] RSPM
#> units 0.8-5 2023-11-28 [1] RSPM
#> vctrs 0.6.5 2023-12-01 [1] RSPM
#> viridisLite 0.4.2 2023-05-02 [1] RSPM
#> withr 3.0.2 2024-10-28 [1] RSPM
#> xfun 0.50 2025-01-07 [1] RSPM
#> yaml 2.3.10 2024-07-26 [1] RSPM
#>
#> [1] D:/a/_temp/Library
#> [2] C:/R/site-library
#> [3] C:/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────