Set of helper functions for downloading some of the most relevant macroeconomic indicators of Spain.
Usage
bde_ind_gdp_var(series_label = "GDP_YoY", ...)
bde_ind_unemployment_rate(series_label = "Unemployment_Rate", ...)
bde_ind_euribor_12m_monthly(series_label = "Euribor_12M_Monthly", ...)
bde_ind_euribor_12m_daily(series_label = "Euribor_12M_Daily", ...)
bde_ind_cpi_var(series_label = "Consumer_price_index_YoY", ...)
bde_ind_ibex_monthly(series_label = "IBEX_index_month", ...)
bde_ind_ibex_daily(series_label = "IBEX_index_day", ...)
bde_ind_gdp_quarterly(series_label = "GDP_quarterly_value", ...)
bde_ind_population(series_label = "Population_Spain", ...)
Arguments
- series_label
Optional. Character vector or value. Allows to specify a custom label for the series extracted. It should have the same length than
series_code
.- ...
Arguments passed on to
bde_series_load
out_format
Defines if the format must be returned as a "long" dataset or a "wide" dataset. Possible values are
"wide"
or"long"
. See Value for Details and Section Examples.parse_numeric
Logical. If
TRUE
the columns would be parsed to double (numeric) values. See Note.extract_metadata
Logical
TRUE/FALSE
. OnTRUE
the output is the metadata of the requested series.parse_dates
Logical. If
TRUE
the dates would be parsed usingbde_parse_dates()
.update_cache
Logical. If
TRUE
the requested file would be updated on thecache_dir
.cache_dir
A path to a cache directory. The directory can also be set via options with
options(bde_cache_dir = "path/to/dir")
.verbose
Logical
TRUE
orFALSE
, display information useful for debugging.
Value
A tibble
with the required series.
Details
This functions are convenient wrappers of bde_series_load()
referencing
specific series. Use verbose = TRUE, extract_metadata = TRUE
options
to see the specification and the source.
Examples
# \donttest{
bde_ind_gdp_var()
#> # A tibble: 113 × 2
#> Date GDP_YoY
#> <date> <dbl>
#> 1 1996-03-01 2.4
#> 2 1996-06-01 2.52
#> 3 1996-09-01 2.98
#> 4 1996-12-01 2.75
#> 5 1997-03-01 3.18
#> 6 1997-06-01 3.35
#> 7 1997-09-01 3.65
#> 8 1997-12-01 4.51
#> 9 1998-03-01 4.37
#> 10 1998-06-01 4.6
#> # ℹ 103 more rows
# }