Skip to contents

This tutorial shows how to make interactive ‘flow maps’ with data from spanishoddata and the flowmapblue (Boyandin 2024) data visualisation package. We cover two examples. First, we only visualise the total flows for a single day. In the second more advanced example we also use the time component that allows you to interactively filter flows by time of day. For both examples, make sure you first go though the initial setup steps. To make static flow maps, please see the static flow maps tutorial.

1 Setup

For the basemap in the final visualisation you will need a free Mapbox access token. You can get one at account.mapbox.com/access-tokens/ (you need to have a Mapbox account, which is free). You may skip this step, but in this case your interative flowmap will have no basemap, and the flows will just flow on solid colour background.

Once you got the access token, you can set it in the MAPBOX_TOKEN environment variable like so:

Sys.setenv(MAPBOX_TOKEN = "YOUR_MAPBOX_ACCESS_TOKEN")

1.1 Set the data directory

Choose where spanishoddata should download (and convert) the data by setting the data directory following command:

spod_set_data_dir(data_dir = "~/spanish_od_data")

The function above will also ensure that the directory is created and that you have sufficient permissions to write to it.

Setting data directory for advanced users

You can also set the data directory with an environment variable:

Sys.setenv(SPANISH_OD_DATA_DIR = "~/spanish_od_data")

The package will create this directory if it does not exist on the first run of any function that downloads the data.

To permanently set the directory for all projects, you can specify the data directory globally by setting the SPANISH_OD_DATA_DIR environment variable, e.g. with the following command:

usethis::edit_r_environ()
# Then set the data directory globally, by typing this line in the file:
SPANISH_OD_DATA_DIR = "~/spanish_od_data"

You can also set the data directory locally, just for the current project. Set the ‘envar’ in the working directory by editing .Renviron file in the root of the project:

file.edit(".Renviron")

2 Simple example - plot flows data as it is

2.1 Get data

2.1.1 Flows

Let us get the flows between districts for a tipycal working day 2021-04-07:

od_20210407 <- spod_get("od", zones = "distr", dates = "2021-04-07")

head(od_20210407)
# Source:   SQL [6 x 14]
# Database: DuckDB v1.0.0 [root@Darwin 23.6.0:R 4.4.1/:memory:]
  date       id_origin id_destination activity_origin activity_destination residence_province_ine_code residence_province_name time_slot distance n_trips trips_total_length_km  year month   day
  <date>     <fct>     <fct>          <fct>           <fct>                <fct>                       <fct>                       <int> <fct>      <dbl>                 <dbl> <int> <int> <int>
1 2021-04-07 01001_AM  01001_AM       home            other                01                          Araba/Álava                     0 005-010     10.5                  68.9  2021     4     7
2 2021-04-07 01001_AM  01001_AM       home            other                01                          Araba/Álava                     0 010-050     12.6                 127.   2021     4     7
3 2021-04-07 01001_AM  01001_AM       home            other                01                          Araba/Álava                     1 010-050     12.6                 232.   2021     4     7
4 2021-04-07 01001_AM  01001_AM       home            other                01                          Araba/Álava                     2 005-010     10.8                 102.   2021     4     7
5 2021-04-07 01001_AM  01001_AM       home            other                01                          Araba/Álava                     5 005-010     18.9                 156.   2021     4     7
6 2021-04-07 01001_AM  01001_AM       home            other                01                          Araba/Álava                     6 010-050     10.8                 119.   2021     4     7

2.1.2 Zones

We also get the district zones polygons to mathch the flows. We use version 1 for the polygons, because the selected date is in 2021, which corresponds to the v1 data (see the relevant codebook).

districts_v1 <- spod_get_zones("dist", ver = 1)

head(districts_v1)
Simple feature collection with 6 features and 6 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 289502.8 ymin: 4173922 xmax: 1010926 ymax: 4720817
Projected CRS: ETRS89 / UTM zone 30N (N-E)
# A tibble: 6 × 7
  id       census_districts                                              municipalities_mitma municipalities                                                                                  district_names_in_v2 district_ids_in_v2                      geom
  <chr>    <chr>                                                         <chr>                <chr>                                                                                           <chr>                <chr>                     <MULTIPOLYGON [m]>
1 2408910  2408910                                                       24089                24089                                                                                           León distrito 10     2408910            (((290940.1 4719080, 290…
2 22117_AM 2210201; 2210301; 2211501; 2211701; 2216401; 2218701; 2221401 22117_AM             22102; 22103; 22115; 22117; 22164; 22187; 22214; 22102; 22103; 22115; 22117; 22164; 22187; 222… Graus agregacion de… 22117_AM           (((774184.4 4662153, 774…
3 2305009  2305009                                                       23050                23050                                                                                           Jaén distrito 09     2305009            (((429745 4179977, 42971…
4 07058_AM 0701901; 0702501; 0703401; 0705801; 0705802                   07058_AM             07019; 07025; 07034; 07058; 07019; 07025; 07034; 07058; 07019; 07025; 07034; 07058; 07019; 070… Selva agregacion de… 07058_AM           (((1000859 4415059, 1000…
5 2305006  2305006                                                       23050                23050                                                                                           Jaén distrito 06     2305006            (((429795.1 4180957, 429…
6 2305005  2305005                                                       23050                23050                                                                                           Jaén distrito 05     2305005            (((430022.7 4181101, 429…

2.2 Prepare data for visualization

2.2.1 Expected data format

To visualise the flows, flowmapblue expects two data.frames in the following format (we use the packages’s built-in data on Switzerland for illustration):

Locations

A data.frame with id, optional name, as well as lat and lon for coordinates of the locations in WGS84 (EPSG: 4326) coordinate reference system.

str(flowmapblue::ch_locations)
'data.frame':   26 obs. of  4 variables:
 $ id  : chr  "ZH" "LU" "UR" "SZ" ...
 $ name: chr  "Zürich" "Luzern" "Uri" "Schwyz" ...
 $ lat : num  47.4 47.1 46.8 47.1 46.9 ...
 $ lon : num  8.65 8.11 8.63 8.76 8.24 ...

Flows

A data.frame with origin, dest, and count for the flows between locations, where origin and dest must match with id’s of the locations data.frame from above, and count is the number of trips between them.

str(flowmapblue::ch_flows)
str(flowmapblue::ch_flows)
'data.frame':   676 obs. of  3 variables:
 $ origin: chr  "ZH" "ZH" "ZH" "ZH" ...
 $ dest  : chr  "ZH" "BE" "LU" "UR" ...
 $ count : int  66855 1673 1017 84 1704 70 94 250 1246 173 ...

2.2.2 Aggregate data - count total flows

od_20210407_total <- od_20210407 |>
  group_by(origin = id_origin, dest = id_destination) |>
  summarise(count = sum(n_trips, na.rm = TRUE), .groups = "drop") |> 
  collect()

head(od_20210407_total)
# A tibble: 6 × 3
  origin   dest       count
  <fct>    <fct>      <dbl>
1 01001_AM 01036      39.8
2 01001_AM 01051    2508.
3 01001_AM 0105903  1644.
4 01001_AM 09363_AM    3.96
5 01001_AM 09907_AM   32.6
6 01001_AM 17033       9.61

2.3 Create locations table with coordinates

We need the coordinates for each origin and destination. We can use the centroids of districts_v1 polygons for that.

districts_v1_centroids <- districts_v1 |>
  st_transform(4326) |> 
  st_centroid() |>
  st_coordinates() |>
  as.data.frame() |>
  mutate(id = districts_v1$id) |>
  rename(lon = X, lat = Y)

head(districts_v1_centroids)
         lon      lat       id
1 -5.5551053 42.59849  2408910
2  0.3260681 42.17266 22117_AM
3 -3.8136448 37.74344  2305009
4  2.8542636 39.80672 07058_AM
5 -3.8229513 37.77294  2305006
6 -3.8151096 37.86309  2305005

2.4 Create the plot

Remember, what for the map to have a basemap, you need to have setup your Mapbox access token in the setup section of this vignette.

Create the interactive flowmap with the flowmapblue function. In the example below we use the darkMode and clustering, and we disable the animation. We do not recommend disabling the clustering when plotting the flows between hundreds and thousands of locations, as this will reduce the redability of the map.

flowmap <- flowmapblue(
  locations = districts_v1_centroids,
  flows = od_20210407_total,
  mapboxAccessToken = Sys.getenv("MAPBOX_TOKEN"),
  darkMode = TRUE,
  animation = FALSE,
  clustering = TRUE
  )

flowmap

Video demonstrating the standard interactive flowmap

Screenshot demonstrating the standard interactive flowmapScreenshot demonstrating the standard interactive flowmap

You can play around with the arguments of the flowmapblue function. For example, you can turn on the animation mode:

flowmap_anim <- flowmapblue(
  locations = districts_v1_centroids,
  flows = od_20210407_total,
  mapboxAccessToken = Sys.getenv("MAPBOX_TOKEN"),
  darkMode = TRUE,
  animation = TRUE,
  clustering = TRUE
  )

flowmap_anim

Video demonstrating the animated interactive flowmap

Screenshot demonstrating the animated interactive flowmap

3 Advanced example - time filter

After following the simple example, let us now add a time filter to the flows. We will use the flowmapblue function to plot flows between districts_v1_centroids for a typical working day 2021-04-07.

3.1 Prepare data for visualization

Just like before, we aggregate the data and rename some columns. This time we will keep combine the date and time_slot (which corresponds to the hour of the day) to procude timestamps, so that the flows can be interactively filtered by time of day.

od_20210407_time <- od_20210407 |>
  mutate(time = as.POSIXct(paste0(date, "T", time_slot, ":00:00"))) |>
  group_by(origin = id_origin, dest = id_destination, time) |>
  summarise(count = sum(n_trips, na.rm = TRUE), .groups = "drop") |> 
  collect()

head(od_20210407_time)
# A tibble: 6 × 4
  origin dest    time                count
  <fct>  <fct>   <dttm>              <dbl>
1 08054  0818401 2021-04-07 01:00:00 43.7
2 08054  0818401 2021-04-07 17:00:00 87.1
3 08054  0818402 2021-04-07 16:00:00 62.6
4 08054  0818403 2021-04-07 05:00:00 26.8
5 08054  0818403 2021-04-07 07:00:00 44.9
6 08054  0818403 2021-04-07 02:00:00  7.11
3.1.0.1 Filter the zones

Because we are now using the flows for each hour of the day, there are 24 times more rows in this data, than in the simple example. Therefore it will take longer to generate the plot and the resulting visualisation may work slower. To create a more manageable example, let us only filter the data to Madrid and surrounding areas.

Let us select all districts that correspond to Barcelona and a 10 km radius around it. Thanks to the district_names_in_v2 column in the zones data, we can easily select all the districts that correspond to Barcelona and then apply the spatial join on the to select some more districts around the polygons that correspond to Barcelona.

zones_barcelona <- districts_v1 |>
  filter(grepl("Barcelona", district_names_in_v2, ignore.case = TRUE))

zones_barcelona_fua <- districts_v1[
  st_buffer(zones_barcelona, dist = 10000)
  ,
]

zones_barcelona_fua_plot <- ggplot() +
  geom_sf(data = zones_barcelona_fua, fill=NA, col = "grey60", linewidth = 0.3) +
  theme_minimal()

zones_barcelona_fua_plot

District zone boundaries in Barcelona and nearby areas

Now we prepare the table with coordinates for the flowmap:

zones_barcelona_fua_coords <- zones_barcelona_fua |>
  st_transform(crs = 4326) |>
  st_centroid() |>
  st_coordinates() |>
  as.data.frame() |>
  mutate(id = zones_barcelona_fua$id) |>
  rename(lon = X, lat = Y)

head(zones_barcelona_fua_coords)
       lon      lat      id
1 2.154317 41.49969   08180
2 1.968438 41.48274   08054
3 2.106401 41.41265 0801905
4 2.118221 41.38697 0801904
5 2.150536 41.42915 0801907
6 2.152419 41.41014 0801906
3.1.0.2 Prepare the flows

Now we can use the zone ids from the zones_barcelona_fua data to select the flows that correspond to Barcelona and the 10 km radius around it.

od_20210407_time_barcelona <- od_20210407_time |>
  filter(origin %in% zones_barcelona_fua$id & dest %in% zones_barcelona_fua$id)
3.1.0.3 Visualise the flows for Barcelona and surrounding areas

Now, we can create a new plot with this data.

flowmap_time <- flowmapblue(
  locations = zones_barcelona_fua_coords,
  flows = od_20210407_time_barcelona,
  mapboxAccessToken = Sys.getenv("MAPBOX_TOKEN"),
  darkMode = TRUE,
  animation = FALSE,
  clustering = TRUE
  )

flowmap_time

Video demonstrating the time filtering on a flowmap

Screnshot demonstrating the time filtering on a flowmap
Boyandin, Ilya. 2024. Flowmap.blue Widget for r. https://doi.org/10.32614/CRAN.package.flowmapblue.