Description

The goal of opendataes is to interact and download data from the https://datos.gob.es API.

This API is an effort from the Spanish government to unify all data sources from different provinces and regions into a single API. The API includes data from entities such as universities, small and big city halls, autonomous communities and Spain as a whole. With over 19,000 datasets in topics all the way from the number of parking spaces in a given city to the levels of air pollution at the regional level (at the moment of writing, October 2018), the API keeps growing with a rich set of public information that researchers and data analysts can use for their own research.

Because aggregating data from all these different sources poses a challenge for reading different formats and harmonizing different datasets, opendataes is very conservative in what it can read. Once you install the package, you can print the contents of permitted_formats and available_publishers to explore which formats and publishers are available.

Collaboration

This package is meant to be developed by the R community and it is completely open to new pull requests, ideas and collaborations. The idea of the package is to include as many formats and publishers as possible by bringing the support and knowledge of other developers If you’re interested in collaborating, please check the vignettes as the package is described in detail there and file a pull request.

Installation

opendataes is currently being tested and is not available on CRAN. You can install the development version from Github with:

remotes::install_github("ropenspain/opendataes")

Example

The package has one main function that allows to read data from the API: openes_load. However, that function can be used in two different ways.

Usage

Once we have the results, we get a print out of the relevant metadata of the dataset.

elections
#> <datos.gob.es API>
#>    Description: Resultados absolutos de las elecciones al Parlamento Europeo d...
#>    Publisher: Ayuntamiento de Barcelona
#>    Languages: en, es, ca
#>    Date of release: 2013-03-13 23:00:00
#>    # of files read: 3 out of 3

But more importantly, we can subset the metadata of the dataset as well as the data that was read.

elections$metadata
#> # A tibble: 3 x 8
#>   keywords language description url   date_issued         date_modified
#>   <chr>    <chr>    <chr>       <chr> <dttm>              <chr>        
#> 1 Absolut… en       Absolute r… http… 2013-03-13 23:00:00 No modificat…
#> 2 Absolut… es       Resultados… http… 2013-03-13 23:00:00 No modificat…
#> 3 Absolut… ca       Resultats … http… 2013-03-13 23:00:00 No modificat…
#> # … with 2 more variables: publisher <chr>, publisher_data_url <chr>
elections$data
#> $`2019_Eleccions_Parlament_Europeu.csv`
#> # A tibble: 39,516 x 8
#>      Any Codi_districte Nom_districte Codi_barri Nom_barri Seccio_censal Camp 
#>    <dbl>          <dbl> <chr>         <chr>      <chr>             <dbl> <chr>
#>  1  2019              1 Ciutat Vella  01         el Raval              1 Elec…
#>  2  2019              1 Ciutat Vella  01         el Raval              2 Elec…
#>  3  2019              1 Ciutat Vella  01         el Raval              3 Elec…
#>  4  2019              1 Ciutat Vella  01         el Raval              4 Elec…
#>  5  2019              1 Ciutat Vella  01         el Raval              5 Elec…
#>  6  2019              1 Ciutat Vella  01         el Raval              6 Elec…
#>  7  2019              1 Ciutat Vella  01         el Raval              7 Elec…
#>  8  2019              1 Ciutat Vella  01         el Raval              8 Elec…
#>  9  2019              1 Ciutat Vella  01         el Raval              9 Elec…
#> 10  2019              1 Ciutat Vella  01         el Raval             10 Elec…
#> # … with 39,506 more rows, and 1 more variable: Nombre <dbl>
#> 
#> $`2014_Eleccions_Parlament_Europeu.csv`
#> # A tibble: 46,992 x 8
#>      Any Codi_districte Nom_districte Codi_barri Nom_barri Seccio_censal Camp 
#>    <dbl>          <dbl> <chr>              <dbl> <chr>     <chr>         <chr>
#>  1  2014              1 Ciutat Vella           1 el Raval  001           Elec…
#>  2  2014              1 Ciutat Vella           1 el Raval  002           Elec…
#>  3  2014              1 Ciutat Vella           1 el Raval  003           Elec…
#>  4  2014              1 Ciutat Vella           1 el Raval  004           Elec…
#>  5  2014              1 Ciutat Vella           1 el Raval  005           Elec…
#>  6  2014              1 Ciutat Vella           1 el Raval  006           Elec…
#>  7  2014              1 Ciutat Vella           1 el Raval  007           Elec…
#>  8  2014              1 Ciutat Vella           1 el Raval  008           Elec…
#>  9  2014              1 Ciutat Vella           1 el Raval  009           Elec…
#> 10  2014              1 Ciutat Vella           1 el Raval  010           Elec…
#> # … with 46,982 more rows, and 1 more variable: Nombre <dbl>
#> 
#> $`2009_Eleccions_Parlament_Europeu.csv`
#> # A tibble: 42,440 x 8
#>      Any Codi_districte Nom_districte Codi_barri Nom_barri Seccio_censal Camp 
#>    <dbl>          <dbl> <chr>              <dbl> <chr>     <chr>         <chr>
#>  1  2009              1 Ciutat Vella           1 el Raval  001           Elec…
#>  2  2009              1 Ciutat Vella           1 el Raval  002           Elec…
#>  3  2009              1 Ciutat Vella           1 el Raval  003           Elec…
#>  4  2009              1 Ciutat Vella           1 el Raval  004           Elec…
#>  5  2009              1 Ciutat Vella           1 el Raval  005           Elec…
#>  6  2009              1 Ciutat Vella           1 el Raval  006           Elec…
#>  7  2009              1 Ciutat Vella           1 el Raval  007           Elec…
#>  8  2009              1 Ciutat Vella           1 el Raval  008           Elec…
#>  9  2009              1 Ciutat Vella           1 el Raval  009           Elec…
#> 10  2009              1 Ciutat Vella           1 el Raval  010           Elec…
#> # … with 42,430 more rows, and 1 more variable: Nombre <dbl>

For a deeper explanation of what the columns of the metadata mean and some important caveats of what the package can and cannot do, please read the package’s vignettes.